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ARDIOVASCULAR GENOMIC MEDICINE Viewpoint and Commentary

ardiac Regeneration
iero Anversa, MD, Annarosa Leri, MD, Jan Kajstura, PHD
alhalla, New York

The role and even the existence of new myocyte formation in the adult heart remain
controversial. Documentation of cell cycle regulators, deoxyribonucleic acid synthesis, and
mitotic images has only in part modified the view that myocardial growth can be
accomplished exclusively from hypertrophy of an irreplaceable population of differentiated
myocytes. However, myocyte regeneration and death occur physiologically, and these cellular
processes are enhanced in pathologic states. These observations have challenged the view of
the heart as a postmitotic organ and have proposed a new paradigm in which parenchymal
and non-parenchymal cells are continuously replaced by newly formed younger populations of
myocytes as well as by vascular smooth muscle and endothelial cells. Heart homeostasis is
regulated by a stem cell compartment characterized by multipotent cardiac stem cells that
possess the ability to acquire the distinct cell lineages of the myocardium. Similarly, adult
bone marrow cells are able to differentiate into cells beyond their own tissue boundary and
create cardiomyocytes and coronary vessels. This process has been termed developmental
plasticity or transdifferentiation. Because of these properties, bone marrow cells and cardiac
stem cells have been employed experimentally in the reconstitution of dead myocardium after
infarction. These cell classes hold promise for the treatment of heart failure in
humans. (J Am Coll Cardiol 2006;47:1769–76) © 2006 by the American College of

ublished by Elsevier Inc. doi:10.1016/j.jacc.2006.02.003
Cardiology Foundation
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HE HEART AS A
OST-MITOTIC ORGAN: THE CONTROVERSY

fundamental issue concerning the ability of the heart to
ustain cardiac diseases is whether myocardial regeneration
ccurs in the adult organ or whether this growth adaptation
s restricted to prenatal life, limiting the response of the
eart to pathologic loads. The concept of the heart as a
erminally differentiated organ unable to replace working
yocytes has been at the center of cardiovascular research

nd therapeutic developments for the past 50 years (1). The
ccepted view has been and remains that the heart reacts to
n increase in workload only by hypertrophy of the existing
yocytes during postnatal maturation, adulthood, and se-

ility. When myocardial hypertrophy is exhausted, ventric-
lar dysfunction supervenes. In the past three decades, the
ocus of molecular cardiology has been the identification of
he signaling pathways regulating the activation and depres-
ion of genes implicated in the hypertrophic reaction of
yocytes in physiologic development and aging or follow-

ng abnormal pathologic states (2).
The possibility that the heart renews its parenchymal cells

as dismissed, and even today myocardial repair is viewed
ith suspicion and trepidation. The engrained paradigm

hat promotes a rather uninteresting biologic perspective of
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he maturing, old, or diseased heart has been shaken by
tudies from our laboratory indicating that myocyte regen-
ration occurs in humans and animals after infarction (3–5),
fter prolonged pressure overload (6), and in the senescent
ecompensated heart (7). Although some of these studies
ere published almost 20 years ago (8) and have continued

o appear through the past two decades, the traditional
stablishment rejected this alternative notion of cardiac biol-
gy, defending a territory that was considered unwavering and
mmovable. The conviction that nothing could be done to
enerate new myocardium was so strong that even the docu-
entation that multipotent bone marrow cells (BMCs) recon-

titute dead myocardium after infarction (9) was immediately
hallenged (10–12). Before discussing the controversy about
yocardial regeneration with exogenous or endogenous undif-

erentiated cells, some comments about the history of the
eart as a postmitotic organ are relevant for understanding
he shift in paradigm required for the implementation of the
ovel field of regenerative cardiology.
Numerous studies of the human heart from 1850 to 1911

eld the view that myocardial hypertrophy was the conse-
uence of hyperplasia and hypertrophy of existing myocytes.
ubsequent reports from 1921 to 1925 questioned the
bility of myocytes to proliferate, suggesting that the in-
rease in cardiac muscle mass in the pathologic heart was the
esult of pure cellular hypertrophy (13). The concept that
yocytes cannot divide originated from difficulty in identi-

ying mitotic figures within these cells. This conviction
ained support from autoradiographic analysis of thymidine
ncorporation in hearts of animals during postnatal growth

nd after conditions of overload (14). Deoxyribonucleic acid
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ynthesis in myocyte nuclei either was not detected or was
ound to be negligible. The dogma was then introduced that
he heart survives and exerts its function until death of the
rganism with the same or lesser number of cells that are
resent at birth. Accordingly, ventricular myocytes in hu-
ans are terminally differentiated cells, and their lifespan

orresponds to that of the individual. The number of
yocytes attains an adult value a few months after birth

13), and the same myocytes are believed to contract 70
imes per minute throughout life. Because a certain fraction
f the population reaches 100 years of age or more, an
nevitable consequence of this paradigm is that cardiac

yocytes are immortal, functionally and structurally. This
ssumption contradicts the concept of cellular aging and
poptotic cell death as well as the logic of a slow turnover of
ells with time in the heart. Myocyte death occurring with
ge and the chronic loss of cells in the absence of myocyte
ultiplication would result in the disappearance of the

ntire organ over a period of a few decades.
In spite of the obvious facts and findings documenting

ctivation of the cell cycle machinery, karyokinesis, and
ytokinesis in a subpopulation of myocytes (3,6,15), the
esistance to a shift in paradigm has been enormous. Several
eports have provided evidence that myocytes die (16) and
hat new ones are constantly being formed in the heart at all
ges in animals and humans (13). Both processes are
arkedly enhanced in the presence of disease states, and the

mbalance between cell growth and cell death is a critical
eterminant of cardiac decompensation and its evolution to
ongestive heart failure and death of the organism. The
xpression of nuclear proteins typical of dividing cells and
easurements of myocyte mitotic index were rejected as

roofs of myocyte formation and considered inconclusive or
he product of incorrect methodology (17,18).

The criticisms of this work varied from the assumption
hat proliferating endothelial cells and fibroblasts were
onfused with cycling myocytes to the belief that nuclei of
ividing endothelial cells and fibroblasts traversed the myo-
yte cytoplasm and reached the position of myocyte nuclei
o give the erroneous image of dividing myocytes (17). The
ature of these comments is better appreciated when the
ethodology employed in the collection of the data sup-

orting myocyte regeneration is considered. Confocal mi-
roscopy was invariably used because of its high resolution
nd its ability to identify structural proteins (Fig. 1). By this
pproach, thick histologic sections can be viewed with a
egree of resolution that was previously restricted to semi-

Abbreviations and Acronyms
BMC � bone marrow cell
CSC � cardiac stem cell
EGFP � enhanced green fluorescent protein
GFP � green fluorescent protein
hin sections of the myocardium. These images can be
p
(
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nalyzed three-dimensionally, excluding misinterpretation
f endothelial cells and fibroblasts as myocytes.
The most relevant observation that dramatically chal-

enged the old paradigm of the heart was the identification
f male cells in female hearts transplanted in male recipients
19). In these cases of sex-mismatched cardiac transplants,
he female heart in a male host had a significant number of
-chromosome–positive myocytes and coronary vessels. Al-

hough discrepancies exist among groups in terms of the
egree of cardiac chimerism (19–24), these results raised the
ossibility that these male cells colonized the female heart
nd differentiated into myocytes and vascular structures.
he presence of male cells in the female heart was consistent
ith the contention that stem-like cells can migrate to the

ardiac allograft and give rise to cardiac cell progenies.
rimitive cells that expressed c-kit, stem cell antigen 1-like,
nd multidrug resistance 1 were identified in control and
ransplanted hearts (19). The recognition of these undiffer-
ntiated cells together with early committed cells was
uggestive of a true cardiac stem cell (CSC) as the critical
odulator of the homeostasis of the normal and stressed
yocardium. These data were the foundation of the work

hat led to the identification of a resident CSC pool in the
dult heart (25).

The possibility that a multipotent progenitor cell resides
n the heart was received with great enthusiasm by some
26,27) and great skepticism by others (22,28). The high
egree of myocyte chimerism found in our study by confocal
icroscopy (Fig. 2) was interpreted as further demonstra-

ion of myocyte turnover and convincing proof of the
ormation of new myocytes in the human heart (19).
onversely, the low extent (20) or absence (22) of myocyte

himerism seen in other reports by light microscopy was
sed to question the concept of myocyte replication, sup-
orting the view that the myocardium is a terminally

igure 1. Myocyte proliferation in humans. A small dividing myocyte
alpha-sarcomeric actin, red) with metaphase chromosomes (arrow) is present
n the left ventricular myocardium of a patient affected by chronic ischemic
ardiomyopathy. Nuclei and metaphase chromosomes are labeled by

ropidium iodide (blue). Laminin defines the boundary of the cells
green).
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ifferentiated tissue incapable of undergoing regeneration.
n editorial was published stating that light microscopic

mages can document artifacts inherent in confocal micros-
opy and therefore myocyte chimerism did not occur (28).
owever, if a result is questioned, the challengers must use
technique and an approach that are at least as sensitive as

hose employed to obtain the information being challenged.
Over the years, several lines of evidence have suggested that

he heart is a dynamic organ: Myocyte-restricted overexpres-
ion of insulin-like growth factor-1 (13), telomerase (29),
yclin D (18), bcl-2 (30) or cdk2 (31) is associated with an
ncrease in the number of cardiomyocytes and higher
olerance to pathologic conditions. Additionally, the num-
er of myocytes in the myocardium increases several-fold
rom birth to adulthood, and BrdU, MCM5, Ki67, or
hymidine labeling of myocytes persists throughout life in
odents, indicating a continuous generation of parenchymal
ells (13). Similarly, heart failure in large mammals is

igure 2. Chimerism of the transplanted female human heart. The
ocalization of the Y-chromosome in the nucleus of a myocyte
A; alpha-sarcomeric actin, red; arrow), endothelial cell (B, arrow), and
mooth muscle cells (B; �-smooth muscle actin, red; arrowheads) is
llustrated in the left ventricle of a female heart transplanted in a male
ecipient. Laminin defines the boundary of the cells (A, green). A red
lood cell is present in the lumen of the coronary arteriole (B; glycophorin;
, yellow).
haracterized by up-regulation of telomerase activity, stim- a
 bycontent.onlinejacc.orgDownloaded from 
lation of cyclins and cyclin-dependent kinases, and en-
anced myocyte karyokinesis and cytokinesis (32). Myocyte
egeneration in humans is significant acutely and chronically
fter infarction, dilated cardiomyopathy, and aortic stenosis
3,4,6,15). These results were expected to promote a change
n paradigm, pointing to a more realistic view of the
otential mechanism of cardiac growth. Unfortunately,
eview articles and editorials published in 2002 to 2004 tried
o reestablish the dogma that the heart becomes terminally
ifferentiated one day after birth (33). It is emblematic that
he ability of the heart for proliferative growth was defined
s “on shadings between none and almost none (18).”

LASTICITY OF BONE
ARROW PROGENITOR CELLS
ND MYOCARDIAL REGENERATION

uring prenatal life, undifferentiated cells undergo a hier-
rchical progressive restriction of developmental options,
nd this mechanism of embryonic specification was thought
o be irreversible and inviolable in adulthood. However, this
otion has been challenged by several examples of transition
rom one cell type to another or, more unexpectedly, from
ne cell lineage to another lineage (34). The ability of adult
tem cells to generate cells beyond their own tissue bound-
ry constitutes a process called developmental plasticity.
urrently, the terms plasticity and transdifferentiation are
sed as synonyms, though transdifferentiation belongs to a
roader class of cell transformation called metaplasia. More-
ver, the reintroduction of the notion of cellular fusion,
xtremely popular in the 1980s, has created uncertainty
bout stem cell plasticity. Cellular and/or nuclear fusion
equires the merge of two distinct cells with the formation
f a hybrid. The growth of the heterokaryon depends on the
ucleus of the undifferentiated cell, and the destiny of the
eterokaryon is regulated by the differentiated cell (35).
The most versatile cell is the BMC, which is the

est-characterized cell in terms of surface antigens and
rowth properties in vitro and in vivo. The focus of
lasticity and fusion was therefore directed to BMCs to
dentify therapeutic strategies for tissue regeneration. A
umber of studies suggested that injury to a target organ
romotes alternate stem cell differentiation, raising the
ossibility that BMCs have the ability to restore dead
yocardium after infarction. For this purpose, BMCs were

njected in the border zone of a myocardial infarct or were
obilized systemically into the circulation with cytokines.
oth interventions led to the repair of the injured tissue and

he formation of functionally competent myocardium in
ice (9,36). Clinicians rapidly implemented BMCs in the
anagement of ischemic and nonischemic cardiomyopathy

n humans. Several clinical trials have been completed
emonstrating that the administration of BMCs is safe and
herapeutically promising (37). Double-blind clinical trials

re ongoing in Europe, Asia, and the U.S., and, before their
 Michal Tendera on March 16, 2009 

http://content.onlinejacc.org


c
e

(
e
t
B
a
i
p
e
m
o
m
f
c
a
c
fi
w
G
i
c
c
l
b
m
s
3
f
c

q
r
o
q
l
n
d
c
r
b
g
w

i
c
B
w
(
m
a
s
f
c
C

i
h
m
o
n
f
o
i
m
d
t

l
d
i
d
d
c

F
t
(
i
n
s
B
(
t
p
e

1772 Anversa et al. JACC Vol. 47, No. 9, 2006
Cardiac Repair May 2, 2006:1769–76
ompletion, it is difficult to establish the actual therapeutic
fficacy of BMCs for the diseased heart.

Recently, two studies (10,11) and two commentaries
33,38) have presented negative results, criticizing the early
xperimental data and clinical trials. The main criticism was
hat the documentation of new myocytes derived from
MCs injected in the infarcted heart (9) was the result of
utofluorescence and, thereby, a product of unspecific label-
ng detected by confocal microscopy (10,11,33,38). The
ossibility of autofluorescence artifacts was initiated by the
rroneous interpretation of poor fixation of skeletal muscle
ade in Goodell’s laboratory (39). The uneven distribution

f green fluorescence detected in frozen sections of skeletal
uscle was considered equivalent to fluorescence resulting

rom labeling of cells positive for enhanced green fluores-
ence protein (EGFP) with GFP primary and secondary
ntibody. The autofluorescence that is generated by the
ross-linking of skeletal muscle proteins during aldehyde
xation by immersion of muscle samples has nothing to do
ith the detection of EGFP in cardiomyocytes with anti-
FP antibody. The intensity of the actual fluorescent signal

s at least 20- to 30-fold stronger than background fluores-
ence (40). Similarly, the use of light microscopy (10) or
onfocal microscopy and frozen sections (11) has severe
imitations; they involve quality of the sections, immunola-
eling, and microscopic resolution. With this approach,
ajor difficulties exist in the identification of small tissue

tructures; myocytes derived from BMCs have a diameter of
to 5 �m and a volume of �500 �m3 (Fig. 3). Transdif-

erentiation of human BMCs into myocytes has been
onfirmed by others in vivo (41–43).

The notion of BMC transdifferentiation has also been
uestioned on a different ground, claiming that cardiac
epair is not a primary event but a secondary process. Fusion
f BMCs with preexisting parenchymal cells that subse-
uently reenter the cell cycle and lead to the formation of a
arge progeny has been proposed as an alternative mecha-
ism of tissue repair (12). However, whether BMCs trans-
ifferentiate or fuse, growth activation occurs, numerous
ells are created and the diseased organ phenotype is largely
escued (44). These findings should have minimized the
iologic controversy between these two distinct forms of
rowth, because from a clinical standpoint the intervention
as successful, regardless of the mechanism(s) involved.
Unfortunately, the concept of cell fusion was introduced

n an attempt to challenge once more the existence of stem
ell plasticity and the prospective therapeutic efficacy of
MCs for the human disease (45). Complex animal models
ere introduced (10–12,46) and their limitations ignored

47) to address a question that can easily be answered with
ore direct and simpler approaches. They include the

nalysis of the karyotype and the detection of the number of
ex chromosomes in the nuclei (40). Surprisingly, these
undamental determinations were not performed in studies
laiming the presence (46) or absence (48) of fusion events.

urrently, fusion of BMCs with cardiomyocytes remains an d

 bycontent.onlinejacc.orgDownloaded from 
n vitro phenomenon (41), although occasional examples
ave been reported in the normal heart. The several million
yocytes formed in the infarcted mouse heart by injection

f BMCs are the product of BMC transdifferentiation and
ot cell fusion (9,40). New myocytes have a volume �20-
old smaller than the remaining cells and contain a number
f chromosomes that excluded cell fusion (Fig. 4). This is an
mportant principle, because fusion of BMCs with adult

ature myocytes cannot induce multiplication of terminally
ifferentiated cells and result in significant myocyte forma-
ion and tissue reconstitution.

The reports and editorials discussed above have chal-
enged an earlier study (9). It is unfortunate that these
ifferences were not resolved by conducting parallel exper-
ments and exchanging reagents and protocols among the
iverging groups. The suggestion that laboratories with
ifferent results become engaged in a collaborative effort to
larify the dispute has to be followed to settle confusion and

igure 3. Bone marrow cells promote myocardial regeneration after infarc-
ion. The intramyocardial injection of enhanced green fluorescent protein
EGFP)-positive blood marrow cells in mice acutely after infarction
nduced the formation of new myocardium. In the infarcted region, the
ewly formed myocytes are small (A; alpha-sarcomeric actin, red) and
how EGFP in the cytoplasm (B, green). (C) This merged image of A and
. The regenerated myocytes express both �-sarcomeric actin and EGFP

yellow-green). These myocytes are �400 �m3 in volume and, because of
heir size, cannot be the product of cell fusion. Nuclei are labeled by
ropidium iodide (blue). *Spared myocytes in the subendocardium. EP �
picardium; EN � endocardium.
ebate and to promote clarity and understanding. In this
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anner, the controversy, discomfort, and uncertainty that
ave been generated in the scientific and clinical community
ay be overcome to help heart failure patients in facing a

ramatic decision as never before.
In summary, BMCs appear to have the ability to generate

ew myocardium independently of cell fusion. If negative
esults would have been more cautiously interpreted, it is
ikely that the actual role that BMCs play in cardiac repair
ould have been better understood and appreciated. The
eated controversy about BMC plasticity will only be
esolved when laboratories with conflicting results are will-
ng to work together and amicably resolve their differences
nstead of perpetuating a futile debate.

ARDIAC PROGENITOR CELLS
ND MYOCARDIAL REGENERATION

he most common comment made against myocyte repli-
ation is that the heart does not regenerate itself after
nfarction (18). Even if a few myocytes are created, the
rowth reserve of the heart is severely limited and the

igure 4. Myocyte regeneration by bone marrow cells does not involv
rotein (EGFP)-positive male blood marrow cells in female mice acute
he infarcted region. The newly formed myocytes are small (A; alpha-sa
eveloping arteriole is also present (A; alpha-smooth muscle actin,
-chromosome (white dots) and one X-chromosome (magenta dots)

usion. (D) The merged images of A, B, and C. The regenerated myoc
ne Y-chromosome.
ntrinsic mechanisms of repair are inadequate for reconsti- m
 bycontent.onlinejacc.orgDownloaded from 
ution of the injured myocardium. There is validity in this
efinition because it describes the evolution of the infarcted
eart. It establishes the basis for cell therapy and the search
or the most appropriate cell for the restoration of the
ecrotic myocardium. The inability to rebuild an infarct is
ot restricted to the heart but it is a general characteristic of
ll organs regardless of whether their cells proliferate or not.
he outcome of infarction is identical whether it affects
eart, brain, liver, kidney, testis, skin, or intestine. Resident
tem cells do not spontaneously migrate and home to the
amaged area where they can grow and mature to replace
he dead tissue. Healing occurs, a scar is formed, and
egional function is permanently impaired.

The unsuccessful repair of the infarcted heart does not
ecessarily indicate that the growth reserve of the surviving
yocardium is insufficient to reconstitute the amount of mass

ost after ischemia. The magnitude of growth that the human
eart can achieve in response to a chronic increase in pressure
nd/or volume load is enormous. Hearts weighing more than
wo pounds and containing two to three times the number of

fusion. The intramyocardial injection of enhanced green fluorescent
er coronary artery ligation induced the formation of male myocytes in
ric actin, red) and express EGFP in the cytoplasm (B, green). A small
w). The nuclei (C; propidium iodide, blue) contain at most one

cating the male phenotype of these cells and therefore excluding cell
xpress alpha-sarcomeric actin, EGFP (yellow-green), and one X- and
e cell
ly aft
rcome

yello
, indi
yocytes present in normal hearts have repeatedly been de-
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cribed in humans (13,49). The issue at hand is whether
trategies can be developed to modulate the regenerative
otential of the human heart. Interventions have to promote
ranslocation of CSCs from the site of storage to the infarct,
heir activation and differentiation into myocytes and coronary
essels, ultimately, mending the “broken heart.”

Maturation and survival of myocytes invading the infarct
s dependent on the availability of oxygen in the area
ndergoing repair. There are two prerequisites for successful
ntegration of cells in the ischemic region. Coronary arte-

igure 5. Cardiac stem cells (CSCs) and myocardial regeneration afte
rotein (EGFP)-positive CSCs in syngeneic rats acutely after infarc
lpha-sarcomeric actin (A, red) and EGFP in the cytoplasm (B, green)
-sarcomeric actin and EGFP (yellow-green). Nuclei are labeled by pro

wo chromosomes 12 (green dots). Therefore, myocyte regeneration do
ines). (E, F) Regenerated coronary arterioles that are positive for alp
ubendocardium. EP � epicardium; EN � endocardium.
ioles and capillary structures have to be formed in order to t
 bycontent.onlinejacc.orgDownloaded from 
ridge the dead tissue and establish communication with
he normally perfused vessels of the viable myocardium (Fig.
). Additionally, the new vascular supply has to permeate the
ngrafted myocytes to preserve their survival, and favor their
rowth, differentiation, and contractile function. There is an
rderly organization of myocytes within the myocardium and a
ell-defined relationship between the parenchymal cells and

he capillary network (13). This proportion is altered with
ardiac pathology, and the goal of cell therapy is the
econstitution of the heart with its physiologic and struc-

arction. The intramyocardial injection of enhanced green fluorescent
induced the formation of myocardium. The new myocytes express
The merged images of A and B. The regenerated myocytes show both
m iodide (blue). (D) The formed myocytes are small and carry at most
t involve cell fusion. Laminin is distributed between myocytes (white
ooth muscle actin and EGFP (yellow-red). *Spared myocytes in the
r inf
tion
. (C)
pidiu
es no

ha-sm
ural properties.
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Several strategies have been implemented experimentally to
epair the infarcted heart. They include fetal cardiomyocytes,
keletal myoblasts, embryonic-derived endothelial cells, bone
arrow-derived immature myocytes, fibroblasts, smooth mus-

le cells, endothelial progenitor cells, and BMCs (50). These
pproaches had a rather uniform outcome that consisted of
ariable degrees of improvement in cardiac performance.
his was most likely due to the formation of a passive graft

hat reduced negative remodeling by decreasing the stiffness
f the scarred portion of the wall. An active graft, which
ynamically contributes to myocardial contractility, has
een observed in only a few cases (9,36,40,41,43). However,
he implanted cells may exert a paracrine effect activating a
rowth response of resident progenitor cells (41,51).

Recently, a CSC has been identified and characterized in
he heart of rats (25), mice (46,52,53), and dogs (5). It is
ntuitively apparent that resident CSCs are the preferential
ells to be tested for cardiac repair, because these cells are
rogrammed to make myocytes and vascular structures. The
-kit–positive cells possess the fundamental properties of
tem cells: They are self-renewing, clonogenic, and multi-
otent (5,25). The intramyocardial injection of c-kit–
ositive CSCs or their local activation by growth factors
esults in significant reconstitution of the infarcted heart
5,25,54). A more limited impact on myocardial regenera-
ion was obtained with the intravenous delivery of stem cell
ntigen 1-positive cells following ischemia-reperfusion in-
ury (46). Whether the less impressive outcome was related
o the route of administration, the animal model, or the
istinct progenitor cell is unclear.
The Isl-1–positive cell has been improperly presented as
new CSC and claimed to be important for the reconsti-

ution of the adult damaged heart (48). It has been known
or quite some time that the Isl-1 transcription factor is
resent in cells that are implicated in the morphogenesis of
he embryonic mouse heart (55). The homozygous deletion
f Isl-1 results in developmental defects of the right ventri-
le, atria, and outflow tract. It is surprising that Isl-1–
ositive cells have been interpreted as a distinct population
f CSCs, because the expression of Isl-1 corresponds to the
nset of myocyte commitment; Isl-1, together with
ATA-4, is a transcriptional activator of the myocyte

ranscription factor MEF2C. Moreover, the expression of
sl-1 in progenitor cells clustered in the niches or scattered
hroughout the atrial and ventricular myocardium of the
dult mouse heart is, at best, extremely rare. Similarly,
sl-1–positive cells have not been detected in the failing
uman heart, calling into question the role of these cells in
ardiac pathology. Even during development, Isl-1–positive
ells are not implicated in the formation of the left ventricle.
hus, there is no basis for the conviction that Isl-1–positive

ells are the “true” CSCs or are relevant for treatment of the
iseased human heart (48).
Myocardial repair requires the formation of myocytes and

oronary vessels, and it cannot be accomplished by a cell

lready committed to the myocyte lineage. Myocytes would

 bycontent.onlinejacc.orgDownloaded from 
ot grow or survive in the absence of vessels. Similarly, the
tilization of cells capable of creating exclusively coronary
essels cannot result in significant tissue regeneration. In
pite of an unsubstantiated and rather popular belief (33),
essels alone do not generate force in an akinetic scarred
egion of the ventricular wall. Myocardial regeneration
ecessitates the administration of a more primitive cell that

s multipotent and can differentiate into the main cardiac
ell lineages: myocytes, vascular smooth muscle cells, and
ndothelial cells.

In conclusion, the demonstration that the heart harbors
tem cells capable of creating myocardium points to novel
trategies for a safe and robust regenerative response of the
ailing infarcted and noninfarcted human heart. Cardiac
tem cells may be coaxed in vivo to home to damaged
egions to promote the formation of functionally competent
yocytes and coronary vasculature. A rapid and efficient

estoration of lost myocardium is often crucial for the
urvival of the organ and organism. This clinical necessity
as its dramatic overtone in patients with large myocardial

nfarcts in which the immediate reduction of infarct size is
ritical for survival. The CSC offers an alternative or
omplementary therapeutic approach to exogenous cells.
he extraordinary clinical potential of myocardial repair
akes the dissection of the biology of the CSC a challeng-

ng and exciting endeavor.
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