Lecture V

Viral vectors, cont.

14 November 2011

Adenoviral vectors

Viral vectors

Integrating

Lentiviral -retroviral -AAV (limited)

Non-integrating

Adenoviral HSV Baculoviral

Integration depends on:

-LTR sequences and integrase (retroviruses) - ITR sequences and rep proteins (AAV)

Adenoviruses

Binding and internalization of adenovirus

1) Attachment to cell surface receptor.

2) Receptor-mediated endocytosis

In vivo infection with adenoviruses

Figure 1 Pathways mediating adenovirus (Ad) Infection of cells *in vitro* and liver cells *in vivo* following Intravascular delivery. Following intravascular injection, plasma proteins bind Ad5; this leads to liver transduction through heparan sulfate proteoglycans (HSPG) and/or lipoprotein-related protein (LRP) binding, effects that can be blocked by pathway inhibitors including warfarin, heparin, heparinase, and lactoferrin.^{31,35}

Waddington & Baker, 2008

Adenoviral serotypes and disorders caused by them

Table 1 Representative Scrotypes and Pathology of Different Subgroups of Adenoviruses

The state of the second	Subgroup					
	A	В	С	D	Е	F
Representative serotypes	12,31	3.7	2.5	9.17,30	4	4,041
Cryptic enteritis	Х					
Acute respiratory infections		х			х	
Hemorrhagic cystitis		х				
Pharyngitis		Х	X			
Pneumonia		X	X			
Keratoconjunctivitis				Х		
Diarrhea						х

Adenoviruses

More than 50 serotypes - type 2 & 5 are used

Genom: 36 kbp, more than 50 proteins E1 region- contains genes regulating the expression of genes necessary for viral replication

E2 i E4 regions - together with E1 are required for viral replication

E3 region- is not required for replication, modulates response of cell to infections

Adenoviruses and adenoviral vectors

- ~50 serotypes of adenoviruses (for gene therapy type 2 and 5 were used),
 causing usually mild illness in humans
- Genome consists a 36 kb double-stranded linear DNA with ITR sequences at each end, with: Early genes (responsible for viral gene transcription, DNA replication, host immune suppression and host cell apoptosis Late genes (coding proteins required for virus assembly)
- E1 early gene is essential for the subsequent adenoviral gene expression

Essential and non-essential elements in different viral vectors

Х

Nonessential genes often deleted

Verma & Weitzman, Ann Rev Biochem 2005

Production of DE1 adenoviral vectors

Construction of adenoviral vectors of 1st generation by homologous recombination

Homologic recombination in HEK 293 packaging cells

Production of adenoviral vectors without homologous recombination (1)

I-Ceul Recognition Sequence 5'TAACTATAACGGTCCTAAGGTAGCGA3' 3'ATTGATATTGCCAGGATTCCATCGCT5'

PI-Sce | Recognition Sequence

5'ATCTA TGT CGGGTGCGGAGAAAGAGGTAA TGAAA TGGCA3' 3'TAGAT ACAGCCCACGCCTCT TT CT CC AT TAC TT TAC CGT5' Pac | Recognition Sequence

5'TTAATTAA3' 3'AATTAATT5'

5'ATTTAAAT3' 3'TAAATTTA5'

E1 genes are deleted from adenoviral genome HEK 293 cells provide in trans the required E1 genes

Production of adenoviral vectors without homologous recombination (2)

Swa I digestion - to reduce the frequency of non-recombinant clones

Production of adenoviral vectors without homologous recombination (3)

Scheme of production and application of adenoviral vectors

Stopa et al., Biotechnologia 2007

Generations of adenoviral vectors

Stopa et al., Biotechnologia 2007

Adenoviral vectors

Vector	Deletions	Production	Capacity	Features
ΔE1	E1 (and E3)	E1 complementing cells	s 7.5 kb	Viral protein neosynthesis, viral replication despite lack of E1
∆E1E4	E1,E4 (and E3)	E1 and E4 complementing cells	10 kb	Reduced viral protein neosynthesis,
∆E1E2	E1,E2A or E2B (and E3)	E1 and E2 complementing cells	9 kb	Block of viral replication sever inhibition of viral protein synthesis

Features of adenoviral vectors

Causes benign infection

Safety-lack of association with oncogenicity

Well characterized and easily manipulated

Stability and high titers of recombinant vectors

Ability to infect a broad range of cell types, including dividing and nondividing cells High efficiency of cellular uptake of insert capacity (up to 37 kb)

Little risk of random chromosomal integration

Various cells are transduced with different efficacy with Ad

Stopa et al., Biotechnologia 2007

Increasing the titer of a vector improves the transduction efficacy

MOI - multiplicity of infection (infection units/ml)

of positive cells
Ddilution × V = titer (IU/ml)

V- volume of virus dilution added to cells

Stopa et al., Biotechnologia 2007

Features of Adenoviral Vectors

Adenoviral gene transfer is one of the most reliable methods for introducing genes into mammalian cells. Because infection by adenovirus is not cellcycle dependent, you can deliver your gene to primary as well as transformed cell lines. Following infection, your target gene is transiently expressed at high levels since many cells receive multiple copies of the recombinant genome. Expression is transient because adenoviral DNA normally does not integrate into the cellular genome. However persistent expression in non-dividing cells has been observed in vivo (Chen, H. H. et al., (1999) Human Gene Ther. 10:365-373.) Adenoviruses are capable of infecting a wide variety of proliferating and quiescent cell types from many different animal species including humans, non-human primates, pigs, rodents, mice, and rabbits (Table I). Published reports suggest that nearly all human cell types—including skin, muscle, bone, nerve, and liver cells are susceptible to infection by adenovirus.

Application of adenoviral vectors in gene therapy

- 1. Gene therapy of inborn errors in metabolism lack of OCT
- 2. Gene therapy of monogenic diseases cystic fibrosis
- 3. Gene therapy of cardiovascular diseases transfer of angiogenic genes
- 4. Gene therapy of cancer it is possible that toxicity and immongenicity will enhance the therapeutic effectiveness

Adenoviral vectors of the first generation

Great:

- Very high transduction efficiency
- Broad host and cell type ranges •
- Can be prepared in high titers ٠
- Can transduce mitotic and post-mitotic cells •
- Do not integrate with genome •
- Can harbor ~ 7 kb of transgene •

But:

- Strong immune response to viral proteins eliminate virally transduced ٠ cells within 30 days
- Neutralizing antibody response prevents readministration of adenovirus • vector of the same serotype

Thus:

Adenoviral vectors provide the high but transient (<4 weeks) transgene expression

Proinflammatory effect of adenoviral vectors

Stopa et al., Biotechnologia 2007

Short expression of transgene after adenoviral gene transfer

Serotype change - does not help much

29

Adenoviral vectors

Very efficient, transduce many cell types, provide high level of expression

Ornithine transcarbamylase deficiency - gene there

Gutless adenoviral vectors

Helper-dependent adenoviral vectors

Or the whole transgene

Cre recombinase - to manipulate genes

ATAACTTCGTATA **ATGTATGC** TATACGAAGTTAT

inverted repeat

Spacer

inverted repeat

1st generation Ad vectors and helper vector

Figure 2. Schematic comparison of the first generation adenoviral vector and helper vector.

Note that in the helper genome the transgene is replaced by stuffer DNA, while the packaging sequence Ψ is flanked by loxP sites. In the presence of recombinase cre, Ψ is excised from the helper genome.

Packaging of gutless vectors

Purification of gutless vectors

Helper-dependent adenoviral vectors

- Very high transduction efficiency
- Broad host species and cell type range
- Can transduce mitotic and post-mitotic cells
- Can harbor ~ 35 kb (!) of transgene
- Do not integrate with genome
- Do not produce any viral proteins
- Show significantly reduced immunogenicity in vivo

Drawback:

Difficult for producing in high titers

Aspartate aminotransferase (AST) after adenovirus injection

Kim et al. PNAS 2001

Kim et al. PNAS 2001

Treatment of obesity with HdAd vectors

Mice ob/ob

Day after injection

Morsy et al. 1998. Proc Natl Acad Sci USA 95:7866-7871.

AAV vectors

adeno-associated viral vectors

AAV

adenovirus

Adeno-associated viruses - AAV

Small, non-pathogenic single stranded DNA viruses

For replication require additional genes delivered by other viruses (adenoviruses or herpes simplex viruses)

Genome AAV - 4681 nucleotides, at both ends there are 145 nt-long ITR (*inverted terminal repeats*)

ITR – necessary *in cis* – initiation of replication – packaging signal – integration into genome

AAVs insigth

- AAV genome is a linear single stranded DNA flanked by inverted terminal repeats ITR(145nt);
- The genome has 2 genes:
- -cap (encodes viral capsid protein)

-rep (encodes 4 overlapping Rep proteins)

AAV genome organization

Rutkowski A et al., Biotechnologia 2007

Infectious cycle of AAV

Site-specific integration

- AAV integrates usually stably into a specific site on chromosome 19q13.3 (AAVS1)
- Integration region- AAVS1 (RBS,TRS)
- Rep78 and Rep68 bind to a 109 bp DNA fragment near AAVS1 and can mediate complex formation (DNA of chromosome 19 and AAV harpin DNA)
- Viral DNA replication within AAVS1 are likely involved in site-specific integration;

Essential and non-essential elements in different viral vectors

Adeno-associated virus

Verma & Weitzman, Ann Rev Biochem 2005

AAV vectors

removal of rap and cap genes transgene insertion

Ways of production of AAV vectors

- dependent on helper vector

- helper-vectors independent

Construction of AAV vectors - system with helper adenoviral

Production of AAV vectors - it is safer to omit helper adenovirus

AAV Helper-Free System

For production of AAV vectors only three sets of adenoviral genes are required: E1, E2A⁵⁴E4 & VA

Vectors in AAV helper-free system

Helper-free production of AAV vectors (2)

Produce AAV Particles in AAV-293 cells

Strategies of production of AAV vectors

Rutkowski et al., Biotechnologia 2007

AAV and genomic integration

Infectious cycle of AAV

AAV vectors features

- due to the lack of Rep68 and Rep78 the specific integration into chromosome 19 is lost
- unspecific integration (low efficacy, about 5-10%)
- episomal expression
- because of non-immunogenic nature the episomal expression in non-dividing cells can be long-term

How to deal with a small capacity of AAV vectors?

AAV- concatamerisation

AAV serotypes

11 serotypes are known

AAV-2 serotype is the most commonly used

Different serotypes can employ various receptors to enter the cells

- AAV-2: heparan sulphate
- AAV-1 & AAV-5 sialic acid
- AAV-5 co-receptor: PDGF-B receptor

Table 1 Key features of viral vectors									
Feature	Adenoviral vector	Helper-dependent adenoviral vector	AAV vector	Retroviral vector	Lentiviral vector				
Particle size (nm)	70–100	70–100	20–25	100	100				
Cloning capacity (kb)	8–10	~30	4.9 (10 after heterodimerization of two AAV virions)	8	9				
Chromosomal integration	No	No	No (yes if <i>rep</i> gene is included)	Yes	Yes				
Vector yield (transducing units/ml)	High (10 ¹²)	High (10 ¹²)	High (10 ¹²)	Moderate (1010)	Moderate (1010)				
Entry mechanism	Receptor (CAR)-mediated endocytosis, endosomal escape and microtubule transport to the nucleus		Receptor-mediated endocytosis, endosomal escape and transport to the nucleus	Receptor binding, conformational change of Env, membrane fusion, internalization, uncoating, nuclear entry of reverse-transcribed DNA					
Transgene expression and practical application	Weeks to months; highly efficient short- term expression (e.g. for cancer or in acute cardiovascular diseases)	>1 year; highly efficient medium- to long-term expression	>1 year; medium- to long-term gene expression for non-acute diseases (onset of transgene expression after ~3 weeks)	Long-term correction of genetic defects					
Oncolytic potential?	Yes	No	No	No (but has potential to spread through the tumour without lysis, thereby spreading a suicide gene that encodes a pro-drug-converting enzyme)					
Emergence of replication- competent vector <i>in vivo</i> ?	Possible but not a major concern	Negligible, low risk	Possible but not a major concern	Risk is a concern	Risk is a concern				
Infects quiescent cells?	Yes	Yes	Yes	No	Yes				
Transcriptional targeting affected by chromosomal integration site?	No	No	No Yes		Yes				
Risk of oncogene activation by the vector?	No	No	No	Yes	Yes				

AAV, adeno-associated virus; CAR, coxsackie and adenovirus receptor; Env, viral envelope protein.